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 Coal remains one of the most widely utilized fossil fuels globally, 
playing a crucial role in energy production and industrial processes. As 
global energy demands continue to rise, the efficient and sustainable 
exploitation of coal resources has become increasingly important. 
Efficiency can be significantly enhanced through the application of 
geological and geophysical methods, among which well-logging holds 
particular significance due to its ability to provide detailed subsurface 
information. Well-logging data, when properly analyzed and 
interpreted, offer critical insights into the geological and stratigraphic 
characteristics of coal-bearing formations. These insights are essential 
for constructing accurate geological models, which, in turn, ensure 
that coal extraction is conducted safely, efficiently, and within planned 
timelines. In recent years, the integration of artificial intelligence (AI) 
and machine learning (ML) techniques into geoscientific workflows 
has opened new avenues for data-driven decision-making. These 
technologies are particularly valuable in handling the vast and 
complex datasets generated during coal assessment, exploration, and 
discovery. By identifying patterns and relationships within the data, 
ML models can enhance predictive accuracy and reduce the reliance 
on manual interpretation. This study applied several machine learning 
algorithms to predict coal seam depth and thickness using well-
logging data collected from the X mine site in Quảng Ninh Province. 
The final model demonstrated consistently strong predictive 
performance when validated against actual well data, accurately 
identifying lithological boundaries and coal-bearing intervals. These 
encouraging outcomes highlight the potential of advanced 
computational techniques to significantly enhance coal seam 
characterization, offering more efficient, accurate, and cost-effective 
alternatives to traditional exploration methods.  
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1. Introduction 

At most coal mines in Vietnam-including 
Mine X in Quảng Ninh Province-coal seam 
thickness has traditionally been estimated 
through exploratory drilling and core sampling. 
However, field challenges such as active mining 
galleries, water loss, protruding rock formations, 
and excessively thin coal seams often hinder core 
recovery (Nguyen et al., 2024). In situations 
where core samples are absent or fragmented, 
well-logging techniques emerge as the most 
viable method for determining seam depth and 
thickness. These geophysical measurements 
provide consistent, objective data independently 
of core quality, offering a reliable solution where 
conventional sampling is compromised. 

Well-logging data not only support seam 
detection but also allows engineers to assess 
drilling efficiency, monitor physical changes 
during drilling, and delineate subsurface 
lithostratigraphy. In the broader context of coal 
resource development-particularly for deeper 
seams-geological and geophysical investigations 
play a foundational role in exploration, 
assessment, and reserve estimation. Among these 
methods, well-logging geophysics (WLG) stands 
out as particularly crucial due to its non-
destructive nature and detailed subsurface 
characterization (Chatterjee and Paul, 2012; 
Miller and Mackey, 1980). 

The accurate estimation of coal reserves, 
which depends heavily on seam thickness in each 
borehole, relies on well-logging measurements. 
Therefore, determining the depth and thickness of 
coal seams based on geophysical parameters 
measured in boreholes is of critical importance 
for mine planning and safety (Hatherly, 2013). 

On average, annual coal exploration drilling 
projects in Vietnam’s northeastern region involve 
a substantial workload. The number of boreholes 
continues to rise; however, well-logging 
geophysical data are often processed and 
interpreted by different engineers, leading to 
subjective results and time-consuming efforts. 
Consequently, researching new technologies to 
shorten processing times and enhance the 
accuracy and objectivity of well-logging data 
interpretation is highly necessary. Such 
advancements would significantly improve the 

determination of coal seam depth and thickness, 
contributing to more effective coal exploration 
and exploitation. 

Well logging is a geophysical technique used 
to record measurements that reflect the physical 
properties of subsurface formations. When 
combined, these logs create a comprehensive 
dataset that reflects the lithological and 
petrophysical characteristics of coal-bearing 
sequences (Srinaiah et al., 2018). Traditionally, 
coal seam identification relied on manual 
thresholding and cross-plotting of log responses, 
guided by geological expertise. For instance, 
gamma ray logs measure natural radioactivity, 
which is typically low in coal due to its organic 
composition-making it a useful indicator for 
identifying coal seams (Jalil et al., 2015). Density 
logs, which record bulk density, help distinguish 
coal from denser surrounding rocks such as 
sandstone or shale (Xianjie et al., 2013). However, 
these methods are often subjective, struggle with 
noisy or complex data, and are inefficient when 
applied to large datasets from multiple wells.  

The emergence of machine learning (ML) 
offers a transformative solution. ML techniques 
enhance the accuracy, efficiency, and automation 
of coal seam classification by identifying patterns 
that may be overlooked by conventional methods. 
This advancement addresses the limitations of 
traditional approaches and opens new 
possibilities for subsurface geological 
interpretation. With the increasing volume of 
geological and well-logging data collected from 
coal mines, scientists worldwide, particularly in 
developed countries-have been researching the 
application of artificial intelligence and machine 
learning to fully leverage this vast dataset for coal 
assessment, exploration, and discovery (Zhou et 
al., 2016; Wood et al., 1983; Wood & Cai, 2022; 
McLean, 2015). Numerous studies have focused 
on developing new processing algorithms and 
automated models for detecting coal seams based 
on geophysical parameters measured in 
exploration boreholes (Shi et al., 2020; Zhou & 
Guo, 2020; Keskinsezer, 2019; Maxwell et al., 
2021). From these recent global publications, it is 
evident that the application of machine learning 
and artificial intelligence techniques to determine 
the depth, thickness, and characteristics of coal 
seams from geophysical well-logging data is a 
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highly regarded research direction. The results of 
these studies highlight the superior effectiveness 
of these methods, significantly enhancing the 
accuracy of predictive models while saving 
considerable time in data processing and 
interpretation. Overall, the application of machine 
learning to classify coal seams from well-logging 
data holds great promise for the Vietnamese 
mining industry. As the country continues to 
expand its coal exploration efforts, incorporating 
data-driven methods will not only reduce manual 
workload and subjective bias but also improve 
interpretation accuracy. Given the success of such 
approaches in international studies, this research 
direction is both timely and relevant for 
improving coal exploration practices in Vietnam. 

2. Database 

2.1. Overview of data 

The database in this study consists of well-
logging data from two wells at the X coal mine 
with various parameters such as Natural Gamma, 
Resistivity, Caliper, and Density. The amount of 
this data is not overly abundant, but it ensures the 
availability of the basic log curves necessary to 
address the task of determining the depth of coal 
seams. The quality of these log curves is high, with 
clear signals and minimal noise, allowing for 
reliable interpretation and analysis. The 
consistency in data acquisition methods and the 
stability of measurement tools across both wells 
contribute to a uniform and reliable dataset. This 
consistency is essential when applying machine 
learning techniques, as it minimizes biases caused 
by variations in data quality or instrumentation. 
Moreover, the good quality of the logs enhances 
the performance of classification models by 
providing distinct and interpretable signals 
corresponding to different lithologies. 

The limited number of logging curves in this 
study is primarily due to the nature of solid 
mineral exploration. Unlike oil and gas wells, 
which are often deep, heavily funded, and 
equipped with a wide range of sophisticated 
logging tools, solid mineral exploration wells-
especially those drilled onshore and targeting 
shallow depths of only a few hundred meters-
tend to focus on acquiring only the most essential 
measurements. These basic logs are usually 

sufficient for identifying key lithological features, 
particularly coal seam boundaries, without the 
need for more complex or costly logging 
techniques. Budget constraints, equipment 
availability, and practical field conditions all 
contribute to this focused and efficient logging 
strategy commonly adopted in coal exploration 
projects. 

Despite the relatively modest size of the 
dataset, the coverage of essential geophysical 
logging parameters makes it suitable for detailed 
subsurface characterization. Natural Gamma logs 
provide valuable information about the shale 
content and help in identifying lithological 
boundaries. Resistivity logs, on the other hand, 
are crucial in differentiating between coal and 
surrounding rock formations due to their 
contrasting electrical properties. Caliper logs offer 
insights into borehole conditions and help assess 
the reliability of other measurements. Density 
logs are particularly important in identifying coal 
seams, as coal typically has a lower density 
compared to most sedimentary rocks. 

In conclusion, although the dataset is limited 
in quantity, its completeness in terms of key 
logging parameters and high signal quality make 
it a strong foundation for developing and testing 
models aimed at identifying coal seams. This data 
plays a critical role in enhancing the 
understanding of subsurface geological structures 
and supports more accurate and efficient 
exploration and resource assessment. 

According to the sample data, three main 
lithological groups were identified in the wells: 
sand, shale, and coal, with thicknesses ranging 
from several centimeters to meters (Figure 1). It 
is apparent that the distribution of rock layers in 
the two wells is quite complex, with rock layers 
tending to interweave and having relatively thin 
thicknesses. Therefore, it can be concluded that 
although these wells are in the same mining area, 
the depth intervals of the rock layers are quite 
different, making it difficult to predict the 
lithological column of a new well without sample 
data. 

2.2. Detect and remove the outliers in database 

Figure 2 presents the frequency histogram 
and boxplot of the five well-logging parameters. 
These charts provide a visual representation of 
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the distribution characteristics of the dataset. The 
horizontal axis (X-axis) illustrates the range of the 
logging parameter values, while the vertical axis 
(Y-axis) describes the frequency of data points 
within a range. In the chart, the Y-axis quantifies 
the number of occurrences for specific value 
ranges in the dataset. 

In the sphere of geophysical data analysis, it 
can be said that well logging datasets prove to be 
quite problematic due to their vulnerability to 

noise and measurement errors, and the 
distributions often exhibit a skew. For example, 
gamma ray intensity, density, or resistivity may 
display rather abnormal behaviors due to certain 
geological heterogeneities, borehole conditions, 
or equipment malfunctions. Traditional statistical 
methods dependent on means and (especially) 
standard deviations lose much of their efficiency 
under such conditions because of the 
considerable influence of the extremes and 

 

Figure1. Well logging data of Well A and Well B. 
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Gaussian distribution assumptions. Another 
technique, Robust Statistics, offers a much 
stronger alternative in such a situation to the 
extent that their estimators use quantities like the 
median and Median Absolute Deviation (MAD) to 
signal and remove the outliers so that the data 
remains clean for the geological interpretations 
that follow (Hampel et al., 1986). This method 
computes the Modified Z-score: 

 Mi = 0.6745×( xi −median(x))/MAD          (1) 

Where: xi - denotes individual data points, 
and the constant 0.6745 aligns MAD with the 
standard deviation of a normal distribution. Data 
points with an absolute Modified Z-score 
exceeding a predefined threshold, typically 3 or 
3.5, are flagged as outliers and excluded from 
further analysis. 

In this study, the authors employed the 
Robust Statistics method to eliminate outliers, 
with the results presented in Figure 3. 

Statistical analyses would play a prime role in 
the present work by explaining the dataset before 
any model development. They would detect 
outliers and help establish feature distributions of 
such factors as DENS, GR, HRD, and RES. For 
minimum values, maximum values, standard 
deviations, and percentiles (P10, P50, P90) of the 
data, the results have to be cross-checked for 
consistency and reliability (Table 1). 

Based on sample data from wells A and B, the 
rock layers here are classified into three main 
lithological types: predominantly sand (52.5%), 
shale (25.2%), and coal, which has a relatively 
small proportion (22%) (Figure 4). 

2.3. Feature selection

 

Figure 2. Raw dataset. 
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In this study, feature selection was conducted 
using the Minimum Redundancy Maximum 
Relevance (MRMR) algorithm to identify the most 
significant well log parameters for classifying 
Sand, Shale, and Coal formations. The MRMR 

algorithm selects features that are highly relevant 
to the target variable while minimizing 
redundancy among selected features, ensuring an 
optimal balance between information gain and 
feature independence. The MRMR-based feature 

 

Figure 3. Dataset after removing outliers. 

 

Figure 4. Proportion of lithological samples 
from the dataset. 

Table 1. Detailed statistics of the well-logging dataset. 

Statistic CAL DENS HRD GR log10RES 

Min 77.19 1.863 232.94 2.34 -1.3565 

Max 127.69 2.735 2589.6 192.16 2.9585 

Mode 127 2.25 517.65 100 -0.16749 

Std Dev 9.5863 0.16265 439.62 36.199 0.79507 

P10 92.062 2.13 564.22 27.05 -0.17393 

P50 108 2.29 889.09 72.58 0.52114 

P90 109.41 2.56 1623.8 121.8 1.9522 
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ranking revealed that Gamma Ray (GR), Density 
(DENS), and Resistivity (RES) were the most 
influential features for lithology classification 
(Figure 5). 

GR effectively differentiates shale from sand 
and coal, while DENS is crucial for identifying coal 
due to its significantly lower density. RES and 
HRD can provide additional information to 
distinguish between different rock formations. 
Since the importance score of Caliper (CAL) was 
relatively low, it was excluded from the final 
model to enhance computational efficiency and 
prevent the inclusion of less informative features. 

3. Research Methods and Results 

The objective set by the authors is to try 
applying and evaluating the effectiveness of 
machine learning techniques in solving the 
problem of predicting lithological layers for wells 
A and B at the X coal mine based on well-logging 
parameters, including Natural Gamma (GR), 
Density Gamma (DENS), Resistivity (RES), 
CALIPER (CAL), along with the distribution 
information of lithological groups (sand, shale, 
and coal) by vertical depth. This can be classified 
as a classification problem, which can be 
effectively handled by supervised machine 
learning techniques. To solve the task, the authors 

applied two algorithms-K-Nearest Neighbors 
(KNN) and Random Forest then evaluated their 
performance before proposing a final model 
(Figure 6). 

K-Nearest Neighbors (KNN) and Random 
Forest have very stark differences in both 
theoretical background and practical operation. 
The comparison will, therefore, highlight these 
differences, all from the perspective of 
classification for geophysical well logging data in 
coal exploration. KNN method is an instance-
based, lazy learning algorithm that predicts the 
label of a new data point by finding the k-nearest 
neighbors in the feature space and assigning the 
majority class among them-usually through 
majority voting. It is unlike most conventional 
algorithms in that it does not have a distinct 
training phase, requiring the algorithm to store 
the entire training dataset for real-time 
computation. On the other hand, Random Forest 
is an ensemble learning model-based method. It 
will create a number of decision trees during 
training based on the bootstrap sampling and 
random feature selection process, and then take 
the average/mean of these predictions. The 
method needs a strong training phase to build a 
forest of trees.

  

Figure 5. Feature importance score sorted. Figure 6. Workflow of this study. 
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During the development of classification 
models, they were optimized (fine-tuned) by 
varying approaches of changing hyperparameters 
in the process of training to track the best model 
that has the best performance according to the 
predefined objective function. In this paper, the 
Grid Search algorithm was used to figure out the 
best model based on how well different models 
predict the occurrence of default when adjusting 
hyperparameters. The final optimum 
hyperparameters for each model are summarized 
in Table 2.  

Model performance was estimated using the 
following evaluation metrics. From the confusion 
matrix (True Positive - TP, True Negative - TN, 
False Positive - FP, False Negative - FN), the main 
estimates are as follows: 

• 𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧i =
TPi

TPi+FPi
 

• 𝐑𝐞𝐜𝐚𝐥𝐥i =
TPi

TPi+FNi
 

• F1i = 2 
Precision∗Recall

Precision + Recall
 

Where: TPi - True positives, i.e., data points 
correctly classified as belonging to class "i"; FPi - 
False positives, i.e., data points incorrectly 
classified as class "i"; FNi - False negatives, i.e., 
data points of class "i" incorrectly classified as 
belonging to other classes.  

The classification results indicate that the 
Random Forest (RF) model performs better than 
the K-Nearest Neighbors (KNN) algorithm 
(Figures 7,8). In this multi-class lithology 
classification problem, the confusion matrix is 
a 3×3 table, represents the number of lithology 
classes (Shale, Sand, Coal). This matrix serves as a 
valuable tool for evaluating the performance of 
classification models by comparing actual labels 
with predicted ones. Each row of the matrix 
corresponds to the actual class, while each 
column represents the predicted class. The 
diagonal elements indicate the number of 
correctly classified instances for each class, 
whereas the off-diagonal elements reflect 
misclassifications, where instances are 

Table 2. Optimum set of parameters for models. 

Model Hyper parameter 
KNN    - n_neighbors= 14 

   - Weights= distance 
   - Metric= Cosine 

Random forest    - n_estimators = 50 
   - max_depth = 5 
   - min_samples_split = 2 
   - min_samples_leaf = 1 

 

  

  

Lithology Precision  Recall  F1 score 

Sand 0.86 0.92 0.89 

Shale 0.85 0.80  0.82 

Coal 0.81 0.77 0.79 
 

Lithology Precision  Recall  F1 score 

Sand 0.87 0.91 0.89 

Shale 0.86 0.81 0.83 

Coal 0.82 0.78 0.8 
 

Figure 7. Confusion matrix of KNN model. 

 Train data  Test data 
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incorrectly assigned to other classes. Conversely, 
higher values in the off-diagonal cells suggest 
confusion between classes. The confusion matrix 
not only provides a comprehensive overview of 
model performance but also helps identify 
specific class-level misclassifications. This insight 
is instrumental in refining model accuracy and is 
often used in conjunction with evaluation metrics 
such as precision, recall, and F1-score. From the 
evaluation of the confusion matrices pertaining to 
both the training set and the test set, RF excels in 
terms of precision, recall and F1-score for all 
lithology classes, especially in the identification of 
the coal layer. 

In the case of the training set, RF has a much 
lower misclassification rate than KNN, with the F1 
score of coal to be 0.85 in RF and 0.79 in KNN, 
indicating that Precision and Recall are better 
with RF. This improvement is due to RF’s use of 
multiple decision tree aggregations, which 
manage complex decision boundaries and high-
dimensional data, therefore reducing noise and 
increasing the prediction accuracy. On the other 
hand, KNN always depends on distances, which 
makes it scale sensitive and occupies the class 
distributions, resulting in more misclassification, 
particularly those lying at the borders between 
shale and coal. On the test set, RF contrarily does 
not lose generalization performance; coal layer 

recall remains RF at 0.86 and KNN at 0.8. The 
confusion matrix also indicates that KNN makes 
more mistakes than RF in assigning coal layers to 
the wrong class of shale, RF being set at low 
gamma ray and density overlaps. On the other 
hand, RF's feature importance weighting allows it 
to differentiate coal from surrounding lithologies 
more effectively. These findings emphasize the 
dominating dependability of RF regarding coal 
seam classification, thus reinforcing the use of RF 
in geological interpretation and resource 
evaluation. 

The last stage in assessing how this 
classification model can be used in practice is the 
Blind Test, which consists of providing data from 
a new well (well C) in the study area. This well's 
data has not been introduced in any form 
throughout the model building exercise, thus 
guaranteeing non-partial evaluation of the model 
in practice. Blind testing is very critical in the 
evaluation and validation of a machine learning 
model's performance. It guarantees that the 
model is not simply reproducing the training data, 
but can correctly predict new data. The procedure 
helps identify overfitting, which is when a model 
performs exceptionally well on training data but 
does not do well on real data. Blind testing also 
helps provide impartial evaluation by preventing 
pretest data exposure bias. It further checks the 

  

  

Lithology Precision  Recall  F1 score 

Sand 0.9 0.94 0.92 

Shale 0.89 0.85 0.87 

Coal 0.88 0.83 0.85 
 

Lithology Precision  Recall  F1 score 

Sand 0.89 0.95 0.92 

Shale 0.9 0.85 0.87 

Coal 0.89 0.83 0.86 
 

Figure 8. Confusion matrix of Random forrest model. 

 Train data  Test data 
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performance of the model in practical situations, 
which can be the case where the distribution of 
data is different from the training set. The results 
of the blind test on Well C's data are shown in 
Figure 9. 

To accurately identify and distinguish coal 
seams from surrounding lithological formations, 

geoscientists have traditionally relied on a suite of 
well log measurements, including gamma ray, 
density, resistivity, and sonic logs. Coal seams are 
characterized by distinct geophysical signatures: 
they generally exhibit low gamma ray readings 
(commonly below 50 API) due to their organic 
composition and minimal natural radioactivity. 

 

Figure 9. Blind test for Well C. 
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Additionally, coal has a low bulk density, typically 
ranging from 1.2 to 1.8 g/cm³, and high resistivity, 
especially under dry conditions, owing to its poor 
electrical conductivity (Jalil et al., 2015). In 
contrast, sandstone formations display moderate 
gamma ray values (approximately 20÷80 API), 
higher bulk densities (around 2.0÷2.6 g/cm³), and 
resistivity values that vary depending on fluid 
saturation. Sonic logs for sandstone usually 
indicate intermediate acoustic travel times, 
reflecting moderate seismic velocities. Shale 
formations, on the other hand, are identifiable by 
their high gamma ray responses (often exceeding 
100 API), which are indicative of radioactive 
minerals such as potassium-bearing clays. Shale 
typically has a density higher than coal but lower 
than quartz-rich sandstone, and its resistivity is 
generally low due to its fine-grained texture and 
higher clay and water content (Xianjie et al., 
2013). By integrating these diverse log 
measurements, geologists can construct robust 
lithological models and delineate boundaries 
between different rock types. Cross-plotting 
techniques-such as gamma ray versus density-
further enhance lithological discrimination. In the 
case of the blind test well, traditional 
interpretation methods were employed to 
generate a lithological column representing the 
vertical distribution of coal, sandstone, and shale. 
This column was subsequently validated against 
core sample data and compared with lithology 
predictions produced by the machine learning 
models proposed in this study. 

The blind test results from well C further 
confirm the superiority of the Random Forest 
(RF) model over both the K-Nearest Neighbors 
(KNN) algorithm and traditional lithological 
interpretation methods in identifying coal seams. 
The RF model achieved an accuracy of 87.9%, 
while KNN reached only 72.4%, and the 
traditional method yielded a significantly lower 
accuracy of just 54.7% when compared with core 
data. Two labeled depth intervals, highlighted in 
Figure 9, illustrate that while the traditional 
method tends to overestimate the thickness of 
coal seams, the KNN model frequently 
misclassifies coal as shale-likely due to 
overlapping gamma ray and density values. In 
contrast, the RF model effectively distinguishes all 
lithologies by leveraging feature importance and 

ensemble decision trees, thereby reducing data 
noise. These findings reinforce the reliability and 
robustness of the RF model for lithological 
classification in coal exploration. 

4. Conclusions and/or Recommendations 

This study proves that machine learning-
based lithology classification is more effective 
than attempts for traditional coal seam 
identification. Classical methods, including well 
log manual interpretation or mere empirical 
threshold division, are often vague, subconscious, 
and faulty when faced with multilayered 
lithological changes. Contrary to this, the RF and 
KNN models developed in this study are more 
precise and can automatically serve the purpose 
of distinguishing Sand, Shale, and Coal formations 
in a scalable manner. 

Following an optimization with Grid Search, 
the RF model outperformed other classifiers with 
exceptionally high accuracy and reliability, far 
surpassing KNN and traditional methods. 
Throughout the tests, RF was able to more 
accurately recognize coal seams (F1-score = 0.86 
vs 0.80 for KNN) as well as classify both sand (F1-
score = 0.92 vs 0.89) and shale (F1-score = 0.87 vs 
0.83). Unlike KNN and more traditional 
approaches, which tend to fail in complicated 
geological settings, RF uses an ensemble of 
decision trees to detect complex structures in well 
log data that make it more powerful and robust. In 
order to test the practical usability of the method 
RF, a blind test was conducted on a new well (well 
C) that had no prior associated data from model 
training and the results prove that RF is able to 
generalize quite well to unseen data. 

This research demonstrates the role of 
machine learning tailored towards seam 
recognition and marks a distinct shift from 
dependency on classical methods. Further works 
will focus on extending the scope of the dataset 
that includes more well log attributes, along with 
the application of deep learning for further 
refinement of classification precision and 
generalization to various geological settings. 
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